物理意义,就是在相互作用中媒介子的维数,或者说媒介子的种类。
例如电磁相互作用的媒介子只有一种就是光子,于是可以它对应的规范场就是U(1)。
而弱相互作用的媒介子有三种+,-,Z,于是就可以推测它对于的规范场是SU(2),因为SU(2)是3维的。
也就是.....
电磁力对应U(1)群,弱相互作用力对应SU(2)群,强相互作用力对应SU(3)群。
而SU(3)群中呢,又有一个8维表示,也就是八个生成元。
所以八重法就是指每8个有类似性质的粒子能填入SU(3)群的8维表示中,它把有相近性质的强作用基本粒子分成一个个族,并认为每个族成员应有8个。
粒子物理中的什么介子八重态啦、重子八重态啦都是八重法的范畴,后来还拓展到了十重态。
所以你看到的X子X重态,本质上都是八重法的衍生。
当然了。
眼下这个时期八重法的争议性还很大,因此很快便有专家提出了不同的看法:
「SU3群?洪元同志,按照你的意思,所谓的元强子不是一个两个,而是八个?」
「如果有这么多的所谓元强子存在,那么CP破缺性质要如何解决?——最简单的一个问题,在这种情境下,同态映射的核在数学上岂不是得是二对一了?」
开口的这位学者叫做王竹溪,也是一位华夏知名的物理学家,华夏第一批学部委员。
不过王竹溪之前工作的方向主要偏教育端,和朱洪元的交集并不算深。
听到王竹溪的疑问,朱洪元却微微笑了笑:
「竹溪同志,你的这个问题我能解答。」
只见他从一旁的桌上拿起了纸和笔,飞快的在桌上边写边解释了起来:
「竹溪同志,同态映射的本质其实就是幺正矩阵的映射验证,只要能证明SO(3)群的元素都可以映射到行列式为1的2X2矩阵D1/2(α,βγ)上就可以了。」
「根据SU(2)群和SO(3)群的定义,SO(3):{O∈GL(3,R)|OTO13,det(O)1},SU(2):{U∈GL(2,C)|U??U12,det(U)1}。」
「接着找一个三维矢量vv(v1,v2,v3),可以利用泡利矩阵将其映射成一个22无迹厄米矩阵,即vv→rrviσi(v3v1??iv2v1+iv2??v3),这个映射的逆映射为vi12trσirr,并且有det(rr)??|vv|2,以及12tr(rr2)|vv|2......」
「这个无迹厄米矩阵可以表示SU(2)群上的代数,那么SU(2)群在这个代数上的伴随作用为rrurru??.其中u∈SU(2)......」
「那么诱导出一个在三维实矢量空间的表示,v′i12tr(σirr′)12tr(σiuσju??)vj,v′iRji(u)vj,因此,Rji(u)12tr(σiuσju??).......」
「如此一来,只要证明R(u)∈SO(3)就行了,我们的思路是......」
看着洋洋洒洒大书特书的朱洪元,徐云的脸上也忍不住露出了一丝微妙。
这算是巧合吗?
要知道。
后世华夏量子场论中有关群论在同态映射方面的证明,主要的「操刀者」正是朱洪元来着.....
不过朱洪元编译那套书的时间是在八十年代中期,如今看来很明显,这又是一个因为国际封锁而被埋没的成果。
十多分钟后。
在众人的