第四百五十五章 小丑竟是我自己?(2 / 5)

验中也符合了对应的模型。”

“我不否认在某些情景下,绕限定轴旋转算符的矩阵元确实会更精细一点。”

“但这种精细是无意义的,更别说它本身还存在有很多的未解环节,它才是真正可能出问题的一个方法。”

听闻此言。

周围不少学者跟着点了点头。

正如铃木厚人所言。

在目前的物理学界研究中,有限角度的矢量转动是个常见的基底构筑方式,契合度涵盖了所有已知粒子。

它简洁而又可靠,从来没有出过任何差错。

而绕限定轴旋转算符的矩阵元在精度上确实高点,但这个所谓的精度确实意义不大。

更重要的是。

物理学界目前对绕限定轴旋转算符的矩阵元构筑的微扰基底,还远远没有研究透。

因为全角动量这个概念范围太广了。

学过力学的朋友都知道。

角动量是经典力学的三大守恒量之一。

但如果再问一句角动量为什么守恒,估摸着知道的人就少了。

实际上。

角动量守恒的原因很简单:

空间转动对称性是导致角动量守恒的真正原因,也就是每一个连续对称性对应一个守恒量。

所以更严格地说。

是定义空间转动对称性对应的守恒量为角动量。

换而言之。

作为一个空间转动群的微量微分算符,角动量可以生成所有的空间转动变换。

所以不同的场,对应的是不同的角动量算符。

以旋量场为例。

对旋量场计算可以发现,它的角动量可以写成JL+σ/2的形式。

其中L是轨道角动量,而σ/2被称为旋量场对应粒子的自旋。

在粒子静止系中,计算J算符的本征值可以发现本征值是±1/2。

这意味着旋量场对应粒子的自旋是1/2。

由于旋量场在做量子化时要采用反对易关系,这使得旋量场对应的自旋1/2的粒子满足费米-狄拉克统计,因此那些粒子也被称为费米子——没错,这就是费米子自旋为半奇数的原因。

61种基本粒子中的36种夸克,12种轻子(包括电子和中微子)就是这样的费米子,36+1248种。

同理。

对矢量场也计算它的角动量,里面也包括自旋项,可以得到矢量场对应自旋为1的粒子。

61种基本粒子中的12种传递相互作用的粒子,就是这样的自旋1粒子。

包括传递电磁相互作用的光子、传递强相互作用的8种胶子,以及传递弱相互作用的两种W粒子和一种Z粒子。1+8+312。

对标量场的计算会发现它没有自旋,对应自旋0粒子,61种基本粒子中最后发现的一个粒子——希格斯粒子就是这样的粒子。

你看。

目前所有的基础微粒,都和角动量算符有着直接的数学关联。

用中二一点的话说。

绕限定轴旋转算符的矩阵元,就是触及‘世界本源’的‘奥秘’。

例如杨老此前提到的把场量当做一个波函数,而非坐标算符的想法。

别看这个想法就轻飘飘一句话。

实际上把它完全归纳为机制后,最少都是一篇《Science》主刊级别的论文。

再举个例子。

一个人一口气能喝下的水是有限的,即便是在极度干渴的情况下,两瓶五百毫升的矿泉水也差不多够用了。

有限角度的矢量转动就相当于这样的矿泉水。

而绕限定轴旋