第四百五十二章 截然不同的结果(上)(4 / 5)

摇头。

不太像。

虽然周绍平看起来确实有点疲惫,但无论是脸色还是计算效率,都远远没有到‘撑不下去’这种程度。

而既然不是体力原因,那么答桉就只有一个了——

周绍平遇到了可以真正信赖的后辈,这股信心之强,硬生生盖过了心中的那道梦魔。

想到这里。

杨老又悄悄看了眼身边的徐云,脸上的表情有些微妙。

周绍平、章公定、侯星远、王老....哦,还有杨老本人。

不知不觉中。

这个年轻人已经与如此多老一辈院士有过接触,并且得到了他们的承认与帮助,被一位又一位老院士载予厚望。

纵观整个华夏科学界的年轻一代,徐云是唯一一人。

不过很有意思的是.....

他本人似乎并没意识到这一点?

............

其实如果徐云能追更到这一章的话,他或许能透过文字内容了解到杨老心中所想。

但遗憾的是,他并没有这个能力。

所以此时他的心思压根就没去考虑什么期待或者信任,而是一心投放到了数据的计算上。

&nss了。

有着狄利克雷的加持,徐云的脑海显得一片清明。

唰唰唰——

大量的公式随着笔尖的移动,一个接一个的出现在了算纸上。

模量平方算符中同时含有位置算符与动量算符,二者存在一种很精确的对易关系。

如果是通过现象测得的微粒,推导起来其实是很容易的,套模板就行了。

但问题是‘冥王星’粒子并没有被捕捉过,所以推导过程就非常麻烦了。

而徐云这次准备的切入点是.....

庞加来群。

因为庞加来群有个很特殊的地方:

它的表示可以完全由其迷向子群及诱导表示决定。

&nincare群万有覆盖的小群在自旋空间上的表示,即可得到该万有覆盖在希尔伯特空间上的不可约幺正表示,即诱导表示。

不同的迷向子群给出不同的诱导表示,对应不同的单粒子态。

即粒子的不可约幺正表示,是完全由时空的基本对称性决定了的,不会有其他因素干扰。

嗯,上面这段话是标准的汉字和人话。

过了片刻。

徐云在密级的计算内容下方,写下了算符 l^z本征值为 m的本征态:

l^+ψmcψm+1......

同时l^z,l^+l^+可得 l^zl^+l^++l^+l^zl^+(1+l^z),所以可见 l^+相当于一个生成算符, l^?相当于一个湮灭算符。

它们使得 l^z的本征值总是依次递增或递减整数1,当角动量的模量平方取定且 l^z的最大本征值为ml-1时,则必有l^+ψl0。

看到这里。

可能有部分众所周同学就感觉有些奇怪了:

为什么最大本征值是ml-1呢,不应该是等于l吗?

原因很简单。

因为当角动量的模量平方取定且l为 m的量最大允许值时,本征值为l+1的态是不存在的。

由于系统总可以处于轨道角动量为0的状态,所以0必是分量算符 l^z的一个本征值。

而由l^+与l^?的行为可知,对于角动量分量算符 l^z,它的相邻本征值之间总是相差一个整数1。

所以分量算符 l^z的本征值只能为m0,±1,±2,...±l-1。