星的轨道都是个椭圆。
其中冥王星在太阳系最外侧,并且它的平均公转速度仅有大约4.7公里/秒。
地球则在相对内侧,平均公转速度达到了30公里/秒。
所以说几乎每隔一段时间,冥王星就会被地球追上一次,被动的形成冲日现象。
而很凑巧的是。
1843年的9月15日,便是冥王星的一个冲日节点,并且是前后一百年内最亮的一次。
另外再提一个知识。
那就是1937年射电望远镜发明出来之前,决定观测效果的核心因素,只有望远镜的口径以及镜片的材质两点。
例如1930年冥王星发现者汤博。
他所使用的天文望远镜不过42英寸,也就是1066.8毫米,比现在空地上的这架‘多多罗’还要小很多呢。
毕竟说一千道一万,汤博所工作的洛厄尔天文台终归是个私人天文台。
虽然创始人洛厄尔贼拉有钱,但和格林威治天文台相比还是不够看的。
汤博之所以能发现冥王星,很大原因要归结到运气好——洛厄尔一开始的目的其实是寻找火星生命来着。
横向比较的话。
汤博1930年使用的娜迦望远镜,在1850年的欧洲连前十都排不到,
实际排名大概13-15之间,和穆查丘斯罗克天文台的镇馆之宝差不多。
更更更关键的是。
冥王星是唯一已知的有大气层包裹的矮行星。
当冥王星位于其近日点时。
大气会是气体状态。
而当冥王星位于其远日点时。
大气层中的气体就会因为低温而凝结,并像雪花一样飘落。
所以在照片中,它的图像反馈会无限接近于‘写实’的概念。
因此在以上诸多原因的加持下。
1843年冥王星冲日前后,有部分照片便拍下了堪称这个时代最清晰的冥王星照片。
将这些这些照片用放大镜放大,你勉强可以看到一个小凸起,也就是冥王星的卫星......
冥卫一。
当然了。
令徐云手抖的原因并非是高斯发现了‘柯南星’卫星这么个简单的事实,而是因为......
“奇怪了。”
只见高斯有些烦躁的挠了挠头发,费解的说道:
“柯南星的角直径是0.065″-0.115″,扁率又小于1%,也就是说它的转轴倾角会非常非常的大。”
“这种情况下它能存在一颗伴星,那么这颗伴星首先会潮汐锁定,其次它的直径绝不可能小到哪里去——它与柯南星的比值,至少要比地月两星来的大。”
“可这样一来,柯南星的质心就必然会在星体之外,那么我们之前计算出来的偏差参量就有问题了.....”
“这到底是怎么回事呢......”
高斯的眉头紧紧拧成一团,手指有规律的在桌面上笃笃作响,神色凝重而又疑惑。
按照他此前的计算。
柯南星周围大概率会存在卫星,数量说不定还不少,毕竟这是宇宙中很常见的事儿。
哪怕是地球这么个倒霉蛋,也都有颗月亮陪着呢。
但存在伴星就很令人惊讶了....
伴星的概念相对常见于恒星系统,比如双星系统、三星系统等等——赫赫有名的三体就是三星系统,原型是南门二。
太阳的伴星目前还没有发现,以前科学界对于太阳伴星的猜测是在太阳的另一面,不过眼下这个猜测已经被否定了。
目前相对有市场的叫做Neme