第二百二十三章 《关于本扑街通宵码了1.5万字所以不想取标题的那些事》(3 / 11)

走进不科学 新手钓鱼人 14571 字 2个月前

是高等代数学中的常见工具,在古代的中西方数学史上,都能隐约见到过类似矩阵的影子。

例如成书最早在东汉前期的《九章算术》。

在这部算经中,就用分离系数法表示除了线性方程组,得到了其增广矩阵。

接着在消元过程中。

使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,就相当于矩阵的初等变换。

但遗憾的是,那时并没有现今理解的矩阵概念——虽然它与现有的矩阵形式上相同。

因此在当时,这种方法只是作为线性方程组的标准表示与处理方式。

这就和之前提及过的天文历法一样。

它们都属于华夏古代有早期应用,但却没有找到正确方向的工具。

至于现代矩阵的萌芽呢,则出现在高斯时期。

后来由阿瑟·凯利在1858年正式提出矩阵论,他也是公认为的矩阵论的奠基人。

至于再往后就是弗罗伯纽斯和埃尔米特、庞加莱的事儿了,并且最终发展到了目前的常用矩阵模块。

看到这里。

聪明的同学想必已经发现了。

没错。

在正常历史中。

阿瑟·凯利要在在1858年才会正式提出矩阵论,普及到大学的时间更是要接近1870年。

因此很明显。

矩阵这个工具与手电筒一样,又是一个提前出现的理论。

不过根据汤姆逊的教学来看,这个时代对于矩阵的掌握程度略微有些原始。

远的不说,甚至连离希尔伯特阶段都有不小的差距。

汤姆逊可是剑桥大学毕业的高材生,接触的基本上是这个时代最精尖的理论知识。

他的解法尚且原始,那么便能够大致判断矩阵前沿的情况了。

因此在整个过程中。

真正令徐云奇怪的其实并非矩阵被提前提出了,而是......

汤姆逊居然在教威尔数学知识?

要知道。

矩阵再怎么样原始,它的基础要求还是很高的。

更别说涉及到切线空间的内容了。

毫不客气的说。

在21世纪,很多大学生都不会接触到切线空间。

当然了。

如果你是奥数班的话,初中应该会涉及相关的知识。

21世纪尚且如此,更何况1850年?

难道说这个满口苏格兰乡村口音的大男孩,过往的经历有些特殊?

例如在高中时期成绩优异,甚至自学了部分大学知识,但却因为家境原因而被迫辍学?

汤姆逊则在机缘巧合之下,发现了他的天赋。

因此带着他前往伦敦闯荡一番,路上则借机教导威尔一些知识?

这应该算是比较合理的解释了,历史上有过类似经历的名人也有不少。

最具代表性的就是法拉第。

这位和法拉利只有一字之差的科学巨匠出生自一个贫苦铁匠家庭,他的父亲体弱多病,工作效率很低。

同时由于牛爵爷主导的第一次工业革命,铁匠这个职业衰落的就更A股似的。

因此法拉第全家收入微薄,仅能勉强维持生活的温饱。

受此影响。

法拉第幼年时没有受过正规教育,只读了两年小学就辍学了。

为生计所迫,他只能上街头当了报童,那年他才12岁。

第二年,他又到一个书商兼订书匠的家里当学徒。

靠着订书期间学到的知识,法拉第用废旧物品制作静电起电机,进行了简单的化学和物理实验。